
Holiday Arboreal Lights Project
sddec18-10



About Us

Rajiv Bhoopala

Computer Engineer

Android Dev/Web 

Server

Michael Scholl

Computer Engineer

Image Processing

Robert Tyynismaa

Computer Engineer

Android Dev

Aaron Hudson

Computer Engineer

RPi Systems Dev

Justin Falat

Computer Engineer

Web App/Server Dev



Client and Advisor: Dr. Thomas Daniels



Problem Statement
● Many people decorate their homes with a set of lights

● However current holiday lights are limited by customizability 

● Currently, to decorate an arboreal display we must first visualize the display and 

lay the lights accordingly



Our Solution
● The idea for our solution is for users to set up RGB LED lights on a tree and then 

upload patterns to the string of lights

● An android application will send a picture of the RGB LED lights to web server

○ The web server will create a model of the LEDs

● Raspberry Pi will then power the lights

● User will be able to select many different colors and patterns



Functional Requirements
● Raspberry Pi PWM controller sends RGB values to LED

● Android App takes pictures for calibration process and sends them to the Web 

App

● Web App selects what patterns to display on the tree

● Web App controls state of LED Manager by creating and deleting .lck files

● LED Manager drives lights



Non-Functional Requirements and Constraints
● Android App must be responsive 

and easy to use

● Calibration process must be 

energy efficient to limit battery use

● Web App must control state of 

LED Manager while maintaining 

mutual exclusion

● System must be able to run for 

long periods of time without fail

● Raspberry Pi 3B processor and 

storage limitations

● Android only mobile application

● Android App and Web App must 

communicate via WiFi



Block Diagram



Android Application
● Communicate with Web 

Server

○ Start calibration process

○ Communicates LED index for 

calibration

○ Send images

● In-App functions

○ Take and save pictures

○ Lock and Unlock Settings

○ Draw app-side triangle



Android Development
● Started off with the Camera2Basic sample provided by Google

○ Basics of Camera2 API

● Added functions to lock and unlock camera settings

● Tried different methods for image capture

○ CountdownTimer

○ Video Intent/Camera2Video

○ HTTP handshake with Web Server

● Unit and Integration Testing

https://github.com/googlesamples/android-Camera2Basic
https://developer.android.com/reference/android/hardware/camera2/package-summary
https://developer.android.com/reference/android/os/CountDownTimer
https://github.com/googlesamples/android-Camera2Video


Raspberry Pi Overview
● Three subsystems

○ Web App

○ Image Processing

○ LED Manager

● LED control and power

○ Data: 3.3V out to 5V in

■ Level shifter 

■ GPIO 18 PWM

○ Power: 12V30A supply to LEDs



Web Application and Server
● Main functionality of Web Application

○ Pattern Selection

○ Display project information

■ Team/Project info, brief component break down

● Hosted locally using Apache2 web server on the Raspberry Pi

○ Web Application built with HTML, CSS, JS for Web App content and functionality

● Server hosts PHP scripts for:

○ Pattern selection and .lck file manipulation

○ Acceptance of files from Android Application

○ Calibration process



Web Application - Pattern Selection
● Allows the user to choose from a set of preset patterns to display on the tree

● Once the pattern is selected, the Web Application creates and deletes .lck files, 

controlling the state of the LED Manager

○ Updates the pattern to display while maintaining mutual exclusion of the pattern file



LED Manager
● Finite State Machine

○ Idle, Running, Calibration

○ Polls .lck files

● Drives WS2811 LEDs

○ RPi WS281x Library

○ PWM via GPIO

● Reads pattern input from .txt file

○ Assigns LED index to RGB value 

○ Refreshes LED state



LED Manager Development
● Replace FastLED C library 

○ Arduino Uno for initial testing

○ Raspberry Pi Model 3B for final implementation

● Using RPi WS281x Library

○ C, Go, Python library for driving WS281x LEDs (shift registers)

○ Creates LED object, updates indices, refreshes

● Need to control LEDs and tree state

○ Finite State Machine 

○ Sockets vs lock files vs watchgod for state control

○ Settled on lock files using os.open() functions



LED Manager Testing
● Unit testing paired with Web App

○ Lock file state changes

■ Proper state sequence when updating patterns

○ Individual state duties

■ Polling for changes, driving lights

● Acceptance testing

○ LED colors

■ What the colors should look like

○ Refresh rate of tree

■ Too slow or too fast





Image Processing
● Image subtraction

○ Scikit-image

○ Comparison value

● Blob detection

○ OpenCV

○ Parameter calibration

○ LED location

● Common errors

○ Light pollution

○ Multiple LED’s

https://scikit-image.org/
https://opencv.org/


Image Processing
● Top Image

○ Using front/right photo

○ Distance from center

○ Angle taken from R/L axis

● Bottom Image

○ Angle conversion

○ Data storage

● Custom Patterns

○ Image extraction



Future Work
● Improving image analysis accuracy

○ Unlit image for each lit LED image

● Better estimate the LED locations we are unable to find

● Implement states in the Android App

○ Display current progress of calibration

● Other quality of life improvements to Android App

○ Delete images immediately upon send to free up space

● In-depth analysis of power usage

● Support for more advanced patterns in Web App and LED Manager

○ Custom patterns from uploaded images, manually created patterns



Q&A



References
RPi WS281x - https://github.com/rpi-ws281x/rpi-ws281x-python

watchgod - https://pypi.org/project/watchgod/ 

https://github.com/rpi-ws281x/rpi-ws281x-python
https://pypi.org/project/watchgod/

